Geometric ergodicity in a weighted Sobolev space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random weighted Sobolev inequalities and application to quantum ergodicity

— This paper is a continuation of [18] where we studied a randomisation method based on the Laplacian with harmonic potential. Here we extend our previous results to the case of any polynomial and confining potential V on R. We construct measures, under concentration type assumptions, on the support of which we prove optimal weighted Sobolev estimates on R. This construction relies on accurate ...

متن کامل

Weighted Stochastic Sobolev Spaces and Bilinear Spde's Driven by Space-time White Noise Proposed Running Head: Weighted Stochastic Sobolev Spaces

In this paper we develop basic elements of Malliavin calculus on a weighted L2( ). This class of generalized Wiener functionals is a Hilbert space. It turns out to be substantially smaller than the space of Hida distributions while large enough to accommodate solutions of bilinear stochastic PDE's. As an example, we consider a stochastic advectiondi usion equation driven by space-time white noi...

متن کامل

Sobolev Metrics on Shape Space, Ii: Weighted Sobolev Metrics and Almost Local Metrics

In continuation of [5] we discuss metrics of the form GPf (h, k) = ∫

متن کامل

Geometric Ergodicity of Gibbs Samplers

Due to a demand for reliable methods for exploring intractable probability distributions, the popularity of Markov chain Monte Carlo (MCMC) techniques continues to grow. In any MCMC analysis, the convergence rate of the associated Markov chain is of practical and theoretical importance. A geometrically ergodic chain converges to its target distribution at a geometric rate. In this dissertation,...

متن کامل

Geometric Ergodicity and Perfect Simulation

Abstract This note extends the work of Foss and Tweedie (1998), who showed that availability of the classic Propp and Wilson (1996) Coupling from The Past algorithm is essentially equivalent to uniform ergodicity for a Markov chain (see also Hobert and Robert 2004). In this note we show that all geometrically ergodic chains possess dominated Coupling from The Past algorithms (not necessarily pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2020

ISSN: 0091-1798

DOI: 10.1214/19-aop1364